__  __    __   __  _____      _            _          _____ _          _ _ 
 |  \/  |   \ \ / / |  __ \    (_)          | |        / ____| |        | | |
 | \  / |_ __\ V /  | |__) | __ ___   ____ _| |_ ___  | (___ | |__   ___| | |
 | |\/| | '__|> <   |  ___/ '__| \ \ / / _` | __/ _ \  \___ \| '_ \ / _ \ | |
 | |  | | |_ / . \  | |   | |  | |\ V / (_| | ||  __/  ____) | | | |  __/ | |
 |_|  |_|_(_)_/ \_\ |_|   |_|  |_| \_/ \__,_|\__\___| |_____/|_| |_|\___V 2.1
 if you need WebShell for Seo everyday contact me on Telegram
 Telegram Address : @jackleet
        
        
For_More_Tools: Telegram: @jackleet | Bulk Smtp support mail sender | Business Mail Collector | Mail Bouncer All Mail | Bulk Office Mail Validator | Html Letter private



Upload:

Command:

www-data@216.73.216.10: ~ $
<?php

namespace PhpOffice\PhpSpreadsheet\Shared\Trend;

abstract class BestFit
{
    /**
     * Indicator flag for a calculation error.
     *
     * @var bool
     */
    protected $error = false;

    /**
     * Algorithm type to use for best-fit.
     *
     * @var string
     */
    protected $bestFitType = 'undetermined';

    /**
     * Number of entries in the sets of x- and y-value arrays.
     *
     * @var int
     */
    protected $valueCount = 0;

    /**
     * X-value dataseries of values.
     *
     * @var float[]
     */
    protected $xValues = [];

    /**
     * Y-value dataseries of values.
     *
     * @var float[]
     */
    protected $yValues = [];

    /**
     * Flag indicating whether values should be adjusted to Y=0.
     *
     * @var bool
     */
    protected $adjustToZero = false;

    /**
     * Y-value series of best-fit values.
     *
     * @var float[]
     */
    protected $yBestFitValues = [];

    /** @var float */
    protected $goodnessOfFit = 1;

    /** @var float */
    protected $stdevOfResiduals = 0;

    /** @var float */
    protected $covariance = 0;

    /** @var float */
    protected $correlation = 0;

    /** @var float */
    protected $SSRegression = 0;

    /** @var float */
    protected $SSResiduals = 0;

    /** @var float */
    protected $DFResiduals = 0;

    /** @var float */
    protected $f = 0;

    /** @var float */
    protected $slope = 0;

    /** @var float */
    protected $slopeSE = 0;

    /** @var float */
    protected $intersect = 0;

    /** @var float */
    protected $intersectSE = 0;

    /** @var float */
    protected $xOffset = 0;

    /** @var float */
    protected $yOffset = 0;

    /** @return bool */
    public function getError()
    {
        return $this->error;
    }

    /** @return string */
    public function getBestFitType()
    {
        return $this->bestFitType;
    }

    /**
     * Return the Y-Value for a specified value of X.
     *
     * @param float $xValue X-Value
     *
     * @return float Y-Value
     */
    abstract public function getValueOfYForX($xValue);

    /**
     * Return the X-Value for a specified value of Y.
     *
     * @param float $yValue Y-Value
     *
     * @return float X-Value
     */
    abstract public function getValueOfXForY($yValue);

    /**
     * Return the original set of X-Values.
     *
     * @return float[] X-Values
     */
    public function getXValues()
    {
        return $this->xValues;
    }

    /**
     * Return the Equation of the best-fit line.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return string
     */
    abstract public function getEquation($dp = 0);

    /**
     * Return the Slope of the line.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getSlope($dp = 0)
    {
        if ($dp != 0) {
            return round($this->slope, $dp);
        }

        return $this->slope;
    }

    /**
     * Return the standard error of the Slope.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getSlopeSE($dp = 0)
    {
        if ($dp != 0) {
            return round($this->slopeSE, $dp);
        }

        return $this->slopeSE;
    }

    /**
     * Return the Value of X where it intersects Y = 0.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getIntersect($dp = 0)
    {
        if ($dp != 0) {
            return round($this->intersect, $dp);
        }

        return $this->intersect;
    }

    /**
     * Return the standard error of the Intersect.
     *
     * @param int $dp Number of places of decimal precision to display
     *
     * @return float
     */
    public function getIntersectSE($dp = 0)
    {
        if ($dp != 0) {
            return round($this->intersectSE, $dp);
        }

        return $this->intersectSE;
    }

    /**
     * Return the goodness of fit for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getGoodnessOfFit($dp = 0)
    {
        if ($dp != 0) {
            return round($this->goodnessOfFit, $dp);
        }

        return $this->goodnessOfFit;
    }

    /**
     * Return the goodness of fit for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getGoodnessOfFitPercent($dp = 0)
    {
        if ($dp != 0) {
            return round($this->goodnessOfFit * 100, $dp);
        }

        return $this->goodnessOfFit * 100;
    }

    /**
     * Return the standard deviation of the residuals for this regression.
     *
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getStdevOfResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->stdevOfResiduals, $dp);
        }

        return $this->stdevOfResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getSSRegression($dp = 0)
    {
        if ($dp != 0) {
            return round($this->SSRegression, $dp);
        }

        return $this->SSRegression;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getSSResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->SSResiduals, $dp);
        }

        return $this->SSResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getDFResiduals($dp = 0)
    {
        if ($dp != 0) {
            return round($this->DFResiduals, $dp);
        }

        return $this->DFResiduals;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getF($dp = 0)
    {
        if ($dp != 0) {
            return round($this->f, $dp);
        }

        return $this->f;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getCovariance($dp = 0)
    {
        if ($dp != 0) {
            return round($this->covariance, $dp);
        }

        return $this->covariance;
    }

    /**
     * @param int $dp Number of places of decimal precision to return
     *
     * @return float
     */
    public function getCorrelation($dp = 0)
    {
        if ($dp != 0) {
            return round($this->correlation, $dp);
        }

        return $this->correlation;
    }

    /**
     * @return float[]
     */
    public function getYBestFitValues()
    {
        return $this->yBestFitValues;
    }

    /** @var mixed */
    private static $scrutinizerZeroPointZero = 0.0;

    /**
     * @param mixed $x
     * @param mixed $y
     */
    private static function scrutinizerLooseCompare($x, $y): bool
    {
        return $x == $y;
    }

    /**
     * @param float $sumX
     * @param float $sumY
     * @param float $sumX2
     * @param float $sumY2
     * @param float $sumXY
     * @param float $meanX
     * @param float $meanY
     * @param bool|int $const
     */
    protected function calculateGoodnessOfFit($sumX, $sumY, $sumX2, $sumY2, $sumXY, $meanX, $meanY, $const): void
    {
        $SSres = $SScov = $SStot = $SSsex = 0.0;
        foreach ($this->xValues as $xKey => $xValue) {
            $bestFitY = $this->yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);

            $SSres += ($this->yValues[$xKey] - $bestFitY) * ($this->yValues[$xKey] - $bestFitY);
            if ($const === true) {
                $SStot += ($this->yValues[$xKey] - $meanY) * ($this->yValues[$xKey] - $meanY);
            } else {
                $SStot += $this->yValues[$xKey] * $this->yValues[$xKey];
            }
            $SScov += ($this->xValues[$xKey] - $meanX) * ($this->yValues[$xKey] - $meanY);
            if ($const === true) {
                $SSsex += ($this->xValues[$xKey] - $meanX) * ($this->xValues[$xKey] - $meanX);
            } else {
                $SSsex += $this->xValues[$xKey] * $this->xValues[$xKey];
            }
        }

        $this->SSResiduals = $SSres;
        $this->DFResiduals = $this->valueCount - 1 - ($const === true ? 1 : 0);

        if ($this->DFResiduals == 0.0) {
            $this->stdevOfResiduals = 0.0;
        } else {
            $this->stdevOfResiduals = sqrt($SSres / $this->DFResiduals);
        }
        // Scrutinizer thinks $SSres == $SStot is always true. It is wrong.
        if ($SStot == self::$scrutinizerZeroPointZero || self::scrutinizerLooseCompare($SSres, $SStot)) {
            $this->goodnessOfFit = 1;
        } else {
            $this->goodnessOfFit = 1 - ($SSres / $SStot);
        }

        $this->SSRegression = $this->goodnessOfFit * $SStot;
        $this->covariance = $SScov / $this->valueCount;
        $this->correlation = ($this->valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->valueCount * $sumX2 - $sumX ** 2) * ($this->valueCount * $sumY2 - $sumY ** 2));
        $this->slopeSE = $this->stdevOfResiduals / sqrt($SSsex);
        $this->intersectSE = $this->stdevOfResiduals * sqrt(1 / ($this->valueCount - ($sumX * $sumX) / $sumX2));
        if ($this->SSResiduals != 0.0) {
            if ($this->DFResiduals == 0.0) {
                $this->f = 0.0;
            } else {
                $this->f = $this->SSRegression / ($this->SSResiduals / $this->DFResiduals);
            }
        } else {
            if ($this->DFResiduals == 0.0) {
                $this->f = 0.0;
            } else {
                $this->f = $this->SSRegression / $this->DFResiduals;
            }
        }
    }

    /** @return float|int */
    private function sumSquares(array $values)
    {
        return array_sum(
            array_map(
                function ($value) {
                    return $value ** 2;
                },
                $values
            )
        );
    }

    /**
     * @param float[] $yValues
     * @param float[] $xValues
     */
    protected function leastSquareFit(array $yValues, array $xValues, bool $const): void
    {
        // calculate sums
        $sumValuesX = array_sum($xValues);
        $sumValuesY = array_sum($yValues);
        $meanValueX = $sumValuesX / $this->valueCount;
        $meanValueY = $sumValuesY / $this->valueCount;
        $sumSquaresX = $this->sumSquares($xValues);
        $sumSquaresY = $this->sumSquares($yValues);
        $mBase = $mDivisor = 0.0;
        $xy_sum = 0.0;
        for ($i = 0; $i < $this->valueCount; ++$i) {
            $xy_sum += $xValues[$i] * $yValues[$i];

            if ($const === true) {
                $mBase += ($xValues[$i] - $meanValueX) * ($yValues[$i] - $meanValueY);
                $mDivisor += ($xValues[$i] - $meanValueX) * ($xValues[$i] - $meanValueX);
            } else {
                $mBase += $xValues[$i] * $yValues[$i];
                $mDivisor += $xValues[$i] * $xValues[$i];
            }
        }

        // calculate slope
        $this->slope = $mBase / $mDivisor;

        // calculate intersect
        $this->intersect = ($const === true) ? $meanValueY - ($this->slope * $meanValueX) : 0.0;

        $this->calculateGoodnessOfFit($sumValuesX, $sumValuesY, $sumSquaresX, $sumSquaresY, $xy_sum, $meanValueX, $meanValueY, $const);
    }

    /**
     * Define the regression.
     *
     * @param float[] $yValues The set of Y-values for this regression
     * @param float[] $xValues The set of X-values for this regression
     */
    public function __construct($yValues, $xValues = [])
    {
        //    Calculate number of points
        $yValueCount = count($yValues);
        $xValueCount = count($xValues);

        //    Define X Values if necessary
        if ($xValueCount === 0) {
            $xValues = range(1, $yValueCount);
        } elseif ($yValueCount !== $xValueCount) {
            //    Ensure both arrays of points are the same size
            $this->error = true;
        }

        $this->valueCount = $yValueCount;
        $this->xValues = $xValues;
        $this->yValues = $yValues;
    }
}

Filemanager

Name Type Size Permission Actions
BestFit.php File 12.19 KB 0777
ExponentialBestFit.php File 3.02 KB 0777
LinearBestFit.php File 2.09 KB 0777
LogarithmicBestFit.php File 2.34 KB 0777
PolynomialBestFit.php File 6.36 KB 0777
PowerBestFit.php File 2.87 KB 0777
Trend.php File 4.89 KB 0777
Filemanager