__ __ __ __ _____ _ _ _____ _ _ _ | \/ | \ \ / / | __ \ (_) | | / ____| | | | | | \ / |_ __\ V / | |__) | __ ___ ____ _| |_ ___ | (___ | |__ ___| | | | |\/| | '__|> < | ___/ '__| \ \ / / _` | __/ _ \ \___ \| '_ \ / _ \ | | | | | | |_ / . \ | | | | | |\ V / (_| | || __/ ____) | | | | __/ | | |_| |_|_(_)_/ \_\ |_| |_| |_| \_/ \__,_|\__\___| |_____/|_| |_|\___V 2.1 if you need WebShell for Seo everyday contact me on Telegram Telegram Address : @jackleetFor_More_Tools:
<?php
declare(strict_types=1);
namespace Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Layer;
use Phpml\NeuralNetwork\Network;
use Phpml\NeuralNetwork\Node\Input;
use Phpml\NeuralNetwork\Node\Neuron;
abstract class LayeredNetwork implements Network
{
/**
* @var Layer[]
*/
protected $layers = [];
public function addLayer(Layer $layer): void
{
$this->layers[] = $layer;
}
/**
* @return Layer[]
*/
public function getLayers(): array
{
return $this->layers;
}
public function removeLayers(): void
{
unset($this->layers);
}
public function getOutputLayer(): Layer
{
return $this->layers[count($this->layers) - 1];
}
public function getOutput(): array
{
$result = [];
foreach ($this->getOutputLayer()->getNodes() as $neuron) {
$result[] = $neuron->getOutput();
}
return $result;
}
/**
* @param mixed $input
*/
public function setInput($input): Network
{
$firstLayer = $this->layers[0];
foreach ($firstLayer->getNodes() as $key => $neuron) {
if ($neuron instanceof Input) {
$neuron->setInput($input[$key]);
}
}
foreach ($this->getLayers() as $layer) {
foreach ($layer->getNodes() as $node) {
if ($node instanceof Neuron) {
$node->reset();
}
}
}
return $this;
}
}
| Name | Type | Size | Permission | Actions |
|---|---|---|---|---|
| LayeredNetwork.php | File | 1.5 KB | 0777 |
|
| MultilayerPerceptron.php | File | 6.33 KB | 0777 |
|