__  __    __   __  _____      _            _          _____ _          _ _ 
 |  \/  |   \ \ / / |  __ \    (_)          | |        / ____| |        | | |
 | \  / |_ __\ V /  | |__) | __ ___   ____ _| |_ ___  | (___ | |__   ___| | |
 | |\/| | '__|> <   |  ___/ '__| \ \ / / _` | __/ _ \  \___ \| '_ \ / _ \ | |
 | |  | | |_ / . \  | |   | |  | |\ V / (_| | ||  __/  ____) | | | |  __/ | |
 |_|  |_|_(_)_/ \_\ |_|   |_|  |_| \_/ \__,_|\__\___| |_____/|_| |_|\___V 2.1
 if you need WebShell for Seo everyday contact me on Telegram
 Telegram Address : @jackleet
        
        
For_More_Tools: Telegram: @jackleet | Bulk Smtp support mail sender | Business Mail Collector | Mail Bouncer All Mail | Bulk Office Mail Validator | Html Letter private



Upload:

Command:

www-data@216.73.216.10: ~ $
<?php

declare(strict_types=1);

namespace Phpml\Classification;

use Phpml\Helper\Predictable;
use Phpml\Helper\Trainable;
use Phpml\Math\Distance;
use Phpml\Math\Distance\Euclidean;

class KNearestNeighbors implements Classifier
{
    use Trainable;
    use Predictable;

    /**
     * @var int
     */
    private $k;

    /**
     * @var Distance
     */
    private $distanceMetric;

    /**
     * @param Distance|null $distanceMetric (if null then Euclidean distance as default)
     */
    public function __construct(int $k = 3, ?Distance $distanceMetric = null)
    {
        if ($distanceMetric === null) {
            $distanceMetric = new Euclidean();
        }

        $this->k = $k;
        $this->samples = [];
        $this->targets = [];
        $this->distanceMetric = $distanceMetric;
    }

    /**
     * @return mixed
     */
    protected function predictSample(array $sample)
    {
        $distances = $this->kNeighborsDistances($sample);
        $predictions = (array) array_combine(array_values($this->targets), array_fill(0, count($this->targets), 0));

        foreach (array_keys($distances) as $index) {
            ++$predictions[$this->targets[$index]];
        }

        arsort($predictions);
        reset($predictions);

        return key($predictions);
    }

    /**
     * @throws \Phpml\Exception\InvalidArgumentException
     */
    private function kNeighborsDistances(array $sample): array
    {
        $distances = [];

        foreach ($this->samples as $index => $neighbor) {
            $distances[$index] = $this->distanceMetric->distance($sample, $neighbor);
        }

        asort($distances);

        return array_slice($distances, 0, $this->k, true);
    }
}

Filemanager

Name Type Size Permission Actions
DecisionTree Folder 0777
Ensemble Folder 0777
Linear Folder 0777
Classifier.php File 131 B 0777
DecisionTree.php File 14.62 KB 0777
KNearestNeighbors.php File 1.68 KB 0777
MLPClassifier.php File 1.38 KB 0777
NaiveBayes.php File 5.6 KB 0777
SVC.php File 744 B 0777
WeightedClassifier.php File 369 B 0777
Filemanager