__  __    __   __  _____      _            _          _____ _          _ _ 
 |  \/  |   \ \ / / |  __ \    (_)          | |        / ____| |        | | |
 | \  / |_ __\ V /  | |__) | __ ___   ____ _| |_ ___  | (___ | |__   ___| | |
 | |\/| | '__|> <   |  ___/ '__| \ \ / / _` | __/ _ \  \___ \| '_ \ / _ \ | |
 | |  | | |_ / . \  | |   | |  | |\ V / (_| | ||  __/  ____) | | | |  __/ | |
 |_|  |_|_(_)_/ \_\ |_|   |_|  |_| \_/ \__,_|\__\___| |_____/|_| |_|\___V 2.1
 if you need WebShell for Seo everyday contact me on Telegram
 Telegram Address : @jackleet
        
        
For_More_Tools: Telegram: @jackleet | Bulk Smtp support mail sender | Business Mail Collector | Mail Bouncer All Mail | Bulk Office Mail Validator | Html Letter private



Upload:

Command:

www-data@216.73.216.10: ~ $
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
# Netscape Communications Corporation.
# Portions created by the Initial Developer are Copyright (C) 2001
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
#   Mark Pilgrim - port to Python
#   Shy Shalom - original C code
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301  USA
######################### END LICENSE BLOCK #########################

from typing import Dict, List, NamedTuple, Optional, Union

from .charsetprober import CharSetProber
from .enums import CharacterCategory, ProbingState, SequenceLikelihood


class SingleByteCharSetModel(NamedTuple):
    charset_name: str
    language: str
    char_to_order_map: Dict[int, int]
    language_model: Dict[int, Dict[int, int]]
    typical_positive_ratio: float
    keep_ascii_letters: bool
    alphabet: str


class SingleByteCharSetProber(CharSetProber):
    SAMPLE_SIZE = 64
    SB_ENOUGH_REL_THRESHOLD = 1024  # 0.25 * SAMPLE_SIZE^2
    POSITIVE_SHORTCUT_THRESHOLD = 0.95
    NEGATIVE_SHORTCUT_THRESHOLD = 0.05

    def __init__(
        self,
        model: SingleByteCharSetModel,
        is_reversed: bool = False,
        name_prober: Optional[CharSetProber] = None,
    ) -> None:
        super().__init__()
        self._model = model
        # TRUE if we need to reverse every pair in the model lookup
        self._reversed = is_reversed
        # Optional auxiliary prober for name decision
        self._name_prober = name_prober
        self._last_order = 255
        self._seq_counters: List[int] = []
        self._total_seqs = 0
        self._total_char = 0
        self._control_char = 0
        self._freq_char = 0
        self.reset()

    def reset(self) -> None:
        super().reset()
        # char order of last character
        self._last_order = 255
        self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
        self._total_seqs = 0
        self._total_char = 0
        self._control_char = 0
        # characters that fall in our sampling range
        self._freq_char = 0

    @property
    def charset_name(self) -> Optional[str]:
        if self._name_prober:
            return self._name_prober.charset_name
        return self._model.charset_name

    @property
    def language(self) -> Optional[str]:
        if self._name_prober:
            return self._name_prober.language
        return self._model.language

    def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
        # TODO: Make filter_international_words keep things in self.alphabet
        if not self._model.keep_ascii_letters:
            byte_str = self.filter_international_words(byte_str)
        else:
            byte_str = self.remove_xml_tags(byte_str)
        if not byte_str:
            return self.state
        char_to_order_map = self._model.char_to_order_map
        language_model = self._model.language_model
        for char in byte_str:
            order = char_to_order_map.get(char, CharacterCategory.UNDEFINED)
            # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but
            #      CharacterCategory.SYMBOL is actually 253, so we use CONTROL
            #      to make it closer to the original intent. The only difference
            #      is whether or not we count digits and control characters for
            #      _total_char purposes.
            if order < CharacterCategory.CONTROL:
                self._total_char += 1
            if order < self.SAMPLE_SIZE:
                self._freq_char += 1
                if self._last_order < self.SAMPLE_SIZE:
                    self._total_seqs += 1
                    if not self._reversed:
                        lm_cat = language_model[self._last_order][order]
                    else:
                        lm_cat = language_model[order][self._last_order]
                    self._seq_counters[lm_cat] += 1
            self._last_order = order

        charset_name = self._model.charset_name
        if self.state == ProbingState.DETECTING:
            if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
                confidence = self.get_confidence()
                if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug(
                        "%s confidence = %s, we have a winner", charset_name, confidence
                    )
                    self._state = ProbingState.FOUND_IT
                elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
                    self.logger.debug(
                        "%s confidence = %s, below negative shortcut threshold %s",
                        charset_name,
                        confidence,
                        self.NEGATIVE_SHORTCUT_THRESHOLD,
                    )
                    self._state = ProbingState.NOT_ME

        return self.state

    def get_confidence(self) -> float:
        r = 0.01
        if self._total_seqs > 0:
            r = (
                (
                    self._seq_counters[SequenceLikelihood.POSITIVE]
                    + 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
                )
                / self._total_seqs
                / self._model.typical_positive_ratio
            )
            # The more control characters (proportionnaly to the size
            # of the text), the less confident we become in the current
            # charset.
            r = r * (self._total_char - self._control_char) / self._total_char
            r = r * self._freq_char / self._total_char
            if r >= 1.0:
                r = 0.99
        return r

Filemanager

Name Type Size Permission Actions
__pycache__ Folder 0755
cli Folder 0755
metadata Folder 0755
__init__.py File 4.68 KB 0644
__main__.py File 123 B 0644
big5freq.py File 30.54 KB 0644
big5prober.py File 1.72 KB 0644
chardistribution.py File 9.8 KB 0644
charsetgroupprober.py File 3.82 KB 0644
charsetprober.py File 5.29 KB 0644
codingstatemachine.py File 3.64 KB 0644
codingstatemachinedict.py File 542 B 0644
cp949prober.py File 1.82 KB 0644
enums.py File 1.64 KB 0644
escprober.py File 3.91 KB 0644
escsm.py File 11.89 KB 0644
eucjpprober.py File 3.84 KB 0644
euckrfreq.py File 13.25 KB 0644
euckrprober.py File 1.71 KB 0644
euctwfreq.py File 36.05 KB 0644
euctwprober.py File 1.71 KB 0644
gb2312freq.py File 20.25 KB 0644
gb2312prober.py File 1.72 KB 0644
hebrewprober.py File 14.2 KB 0644
jisfreq.py File 25.19 KB 0644
johabfreq.py File 41.5 KB 0644
johabprober.py File 1.71 KB 0644
jpcntx.py File 26.42 KB 0644
langbulgarianmodel.py File 102.1 KB 0644
langgreekmodel.py File 96.16 KB 0644
langhebrewmodel.py File 95.88 KB 0644
langhungarianmodel.py File 98.98 KB 0644
langrussianmodel.py File 125.02 KB 0644
langthaimodel.py File 100.35 KB 0644
langturkishmodel.py File 93.13 KB 0644
latin1prober.py File 5.25 KB 0644
macromanprober.py File 5.93 KB 0644
mbcharsetprober.py File 3.63 KB 0644
mbcsgroupprober.py File 2.08 KB 0644
mbcssm.py File 29.68 KB 0644
py.typed File 0 B 0644
resultdict.py File 402 B 0644
sbcharsetprober.py File 6.25 KB 0644
sbcsgroupprober.py File 4.04 KB 0644
sjisprober.py File 3.91 KB 0644
universaldetector.py File 14.5 KB 0644
utf1632prober.py File 8.31 KB 0644
utf8prober.py File 2.75 KB 0644
version.py File 244 B 0644
Filemanager